Inégalité de Hoeffding

Lemme — On suppose X centrée et presque sûrement bornée par 1. Alors $\forall t \in \mathbb{R}, \ \mathbb{E}\left(e^{tX}\right) \leqslant e^{t^2/2}$.

DÉMONSTRATION

Soient $t \in \mathbb{R}$ et $x \in [-1; 1]$.

Comme $\frac{1}{2}(1-x)(-t) + \frac{1}{2}(1+x)t = xt$ et $\frac{1}{2}(1-x) \in [0;1]$ et $\frac{1}{2}(1+x) \in [0;1]$, par convexité de l'exponentielle,

$$e^{tx} \le \frac{1}{2}(1+x)e^{-t} + \frac{1}{2}(1-x)e^{t}.$$

D'où

$$\mathbb{E}\left(e^{tX}\mathbb{1}_{[-1;1]}(X)\right) \leqslant \mathbb{E}\left(\frac{1}{2}(1+X\mathbb{1}_{[-1;1]}(X))e^{-t} + \frac{1}{2}(1-X\mathbb{1}_{[-1;1]}(X))e^{t}\right).$$

Donc

$$\mathbb{E}\left(e^{tX}\right) \leqslant \mathbb{E}\left(\frac{1}{2}(1+X)e^{-t} + \frac{1}{2}(1-X)e^{t}\right).$$

Comme la variable X est centrée, on conclut

$$\mathbb{E}\left(e^{tX}\right) \leqslant \frac{1}{2}e^{-t} + \frac{1}{2}e^{t} = \operatorname{ch}(t).$$

Comme
$$\operatorname{ch}(t) = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!} \leqslant \sum_{n=0}^{+\infty} \frac{t^{2n}}{2^n (n!)} = e^{t^2/2}$$
, on obtient le résultat.

Théorème

Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes centrées. On suppose $\forall n\geqslant 1,\ |X_n|\leqslant c_n\ ps$.

Pour tout $n \geqslant 1$, on pose $S_n = \sum_{i=1}^n X_i$. Alors

$$\forall \varepsilon > 0, \ \mathbb{P}(|S_n| > \varepsilon) \leqslant 2 \exp\left(\frac{-\varepsilon^2}{2\sum_{i=1}^n c_i^2}\right).$$

DÉMONSTRATION

Soit $k \geqslant 1$.

On applique le lemme à la variable aléatoire $\frac{X_k}{c_k}$: $\forall t \in \mathbb{R}, \ \mathbb{E}\left(e^{t\frac{X_k}{c_k}}\right) \leqslant e^{t^2/2}$. D'où $\forall t \in \mathbb{R}, \ \mathbb{E}\left(e^{tX_k}\right) \leqslant \exp\left(\frac{t^2}{2}c_k^2\right)$.

Soit $n \ge 1$. Soit t > 0.

$$\mathbb{E}\left(e^{tS_n}\right) = \mathbb{E}\left(\prod_{i=1}^n e^{tX_i}\right) = \prod_{i=1}^n \mathbb{E}\left(e^{tX_i}\right) \text{ par indépendance des } X_i$$

$$\leqslant \prod_{i=1}^n \exp\left(\frac{t^2}{2}c_i^2\right) \text{ d'après précédemment}$$

$$\leqslant \exp\left(\frac{t^2}{2}\sum_{i=1}^n c_i^2\right).$$

Soit $\varepsilon > 0$.

$$\mathbb{P}\left(S_n>\varepsilon\right)=\mathbb{P}\left(e^{tS_n}>e^{t\varepsilon}\right)\leqslant\frac{\mathbb{E}\left(e^{tS_n}\right)}{e^{t\varepsilon}}\text{ d'après l'inégalité de Markov}\\\leqslant\exp\left(-t\varepsilon+\frac{t^2}{2}\sum_{i=1}^nc_i^2\right).$$

Comme le minimum de cette expression est atteint en $t = \frac{\varepsilon}{\sum_{i=1}^n c_i^2}$, on a

$$\mathbb{P}(S_n > \varepsilon) \leqslant \min_{t>0} \exp\left(-t\varepsilon + \frac{t^2}{2} \sum_{i=1}^n c_i^2\right)$$

$$\leqslant \exp\left(-\frac{\varepsilon}{\sum_{i=1}^n c_i^2} \varepsilon + \frac{1}{2} \left(\frac{\varepsilon}{\sum_{i=1}^n c_i^2}\right)^2 \sum_{i=1}^n c_i^2\right)$$

$$\leqslant \exp\left(\frac{-\varepsilon^2}{2\sum_{i=1}^n c_i^2}\right)$$

On applique cette égalité à la suite de variables aléatoires centrées $(-X_n)_{n\geqslant 1}$.

$$\mathbb{P}\left(-S_n > \varepsilon\right) \leqslant \exp\left(\frac{-\varepsilon^2}{2\sum_{i=1}^n c_i^2}\right).$$

Donc

$$\mathbb{P}\left(|S_n| > \varepsilon\right) = \mathbb{P}\left(S_n > \varepsilon\right) + \mathbb{P}\left(-S_n > \varepsilon\right) \leqslant 2\exp\left(\frac{-\varepsilon^2}{2\sum_{i=1}^n c_i^2}\right).$$

Corollaire — *On suppose qu'il existe* $\alpha, \beta > 0$ *tels que*

$$\forall n \geqslant 1, \ \sum_{i=1}^{n} c_i^2 \leqslant n^{2\alpha-\beta}.$$

Alors $n^{-\alpha}S_n$ converge presque sûrement vers 0.

DÉMONSTRATION

Soit $\varepsilon > 0$. Soit $n \in \geq 1$.

Alors

$$\mathbb{P}\left(|S_n| > \varepsilon n^{\alpha}\right) \leqslant 2 \exp\left(\frac{-\varepsilon^2 n^{2\alpha}}{2\sum_{i=1}^n c_i^2}\right) \leqslant 2 \exp\left(-\frac{1}{2}\varepsilon^2 n^{\beta}\right).$$

A partir d'un certain rang, on a $\frac{1}{2}\varepsilon^2 n^{\beta} \geqslant 2\ln(n)$ d'où $\exp\left(-\frac{1}{2}\varepsilon^2 n^{\beta}\right) \leqslant n^{-2}$. Donc la série de terme général $\mathbb{P}\left(n^{-\alpha}\left|S_n\right|>\varepsilon\right)$ est convergente.

D'après le lemme de Borel-Cantelli, on a

$$\mathbb{P}\left(\limsup_{n\to+\infty} \{n^{-\alpha} |S_n| > \varepsilon\}\right) = 0$$

soit

$$\mathbb{P}\left(\forall N \geqslant 1, \exists n \geqslant N, n^{-\alpha} |S_n| > \varepsilon\right) = 0.$$

Par union dénombrable,

$$\mathbb{P}\left(\exists \varepsilon \in \mathbb{Q}^{+*}, \ \forall N \geqslant 1, \ \exists n \geqslant N, \ n^{-\alpha} |S_n| > \varepsilon\right) = 0.$$

Par passage au complémentaire,

$$\mathbb{P}\left(\forall \varepsilon \in \mathbb{Q}^{+*}, \ \exists N \geqslant 1, \ \forall n \geqslant N, \ n^{-\alpha} |S_n| \leqslant \varepsilon\right) = 1.$$